
Journal of Network Intelligence ©2024 ISSN 2414-8105 (Online)

Taiwan Ubiquitous Information Volume 9, Number 3, August 2024

DMAM-ECG: A Diffusion Model with Self-Attention
Module for ECG Signal Denoising

Zheng-Dong Hu, Yang Hong, Jia-Yan Huang

New Engineering Industry College
Putian University, Putian 351100, China

zdong hu@163.com, luuvletter@gmail.com, jyan huang@163.com

Kai-Hong Chen

School of Mathematics and Data Science
Minjiang University, Fuzhou 350108, China

kaihong chenc@163.com

Wan-Qi Zhao

The University of Sheffield, Sheffield S10 2TN, United Kingdom
wanqizhao0110@163.com

Antoni Grau, Edmundo Guerra, Chuan-Sheng Wang∗

Department of Automatic Control Technical
Polytechnic University of Catalonia, Barcelona 08034, Spain

antoni.grau@upc.edu, edmundo.guerra@upc.edu, wangcleaner@gmail.com

Fu-Quan Zhang∗

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control
Minjiang University, Fuzhou 350108, China

zfq@mju.edu.cn

∗Corresponding author: Chuan-Sheng Wang and Fu-Quan Zhang

Received August 23, 2023, revised December 9, 2023, accepted March 4, 2024.

1278



DMAM-ECG: A Diffusion Model with Self-Attention Module for ECG Signal Denoising 1279

Abstract. Electrocardiogram (ECG) is the most common and non-invasive auxiliary
diagnostic technique for heart disease. However, the ECG signal is susceptible to various
noises during the collection process, which will impact subsequent analysis and diag-
nosis. Therefore, ECG signal denoising has become the primary task after signal ac-
quisition. ECG signal denoising aims to remove noise interference from the collected
noisy signals for clarify abnormal waveforms in it, and thus diagnose diseases more ac-
curately. In this paper, to obtain high-quality and high-fidelity denoised ECG signals,
we propose a novel diffusion model with self-attention module for ECG signal denois-
ing (DMAM-ECG). Specifically, the DMAM-ECG contains two main branches used to
extract features of input noise signal observations and potential variables, respectively.
Each branch consists of 6 designed Convolution-Instancenormal-LeakyReLU Filter Blocks
(CIL-Filter Blocks). Meanwhile, DMAM-ECG introduces the self-Attention Module Fu-
sion Blocks (SAM-Fusion Blocks) to further extract features for the first branch, and
then fuse the output features with the second branch. Besides, we use a multi-shot re-
construction strategy to further improve signal denoising. Quantitative and qualitative
results on the QT database show that the proposed DMAM-ECG performs better than
the existing 5 state-of-the-art ECG signal denoising methods, especially for strong noise
interference ECG signal removal. To sum up, our DMAM-ECG introduces self-attention
module into the diffusion model to improve the grasp of global information and achieve
high-quality information preservation for extremely noise removal of ECG signal. In
particular, it uses only 3-shot reconstruction gets much better denoised results than that
of the best baseline with 10-shot. The code of the proposed DMAM-ECG is available at
https://github.com/luvletterh/DMAM-ECG.

Keywords: Heart Disease, ECG Signal Denoising, Baseline Wander, Diffusion Model,
self-Attention Module

1. Introduction. Heart disease seriously threatens people’s lives, and the auxiliary di-
agnostic tools and technologies for early detection of it are in great demand. Electrocar-
diogram (ECG) can reflect the electrical activity process of cardiac excitation, and it is a
common non-invasive auxiliary diagnostic technique in clinical practice [1, 2, 3]. However,
ECG signals have the characteristics of strong randomness and poor anti-reference ability,
and thus they are prone to various noise interference from the human body’s internal or
external environment, such as baseline wander caused by human respiration, power fre-
quency interference caused by the power system, Electromyographic (EMG) interference
caused by muscle tremors, and motion artifacts. As shown in Figure 1, it gives a clean
ECG signal with different noise interference. The noisy ECG signal will impact the sub-
sequent analysis and diagnosis. Therefore the removal of ECG signal noise has become
the primary task after signal acquisition and is of decisive significance for ECG signal
diagnosis, especially automatic diagnosis.

High-quality and high-fidelity ECG signal denoising can improve the availability of col-
lected ECG signals and reduce the cost of clinical trials. The existing ECG denoising
methods can be divided into traditional filter-based methods and deep learning-based
methods. Traditional filter-based methods often denoise ECG signals from signal pro-
cessing perspective. They usually use different filters to preliminary remove noises first
and then use some transform, such as wavelet transform [4, 5] or S-transform [6], to ob-
tain the refined ECG signals. However, traditional filter-based methods are difficult to
balance high-frequency and low-frequency noise removal for ECG signals with extreme
noise interference.

To solve the shortcomings of traditional methods, some more effective deep learning-
based ECG signal denoising methods have been proposed [7, 8]. Antczak et al. [9]
proposed an ECG signal denoising method based on recurrent neural network, which can
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effectively denoise for extreme noise interference ECG signal. Nichol et al. [10] improved
the denoising autoencoder using wavelet transform to construct a deep neural network for
ECG signal enhancement. Based on the fully convolution neural networks (CNNs), Chiang
et al. [11] designed a denoising automatic encoder, which can remove high noise reference
with low signal distortion. Romero et al. [12] proposed a deep-learning-based filter
to remove the most common uncontrollable baseline wander. By combining generative
adversarial networks (GANs) and residual networks (ResNet), Xu et al. [13] presented
an ECG denoising method to remove noise while preserving the effective information of
the original signal. However, deep learning-based methods are limited by the strength of
noise interference, resulting in limited availability of denoised ECG signals.

In this paper, to recover high-quality and high-fidelity clean signal from an ECG sig-
nal with extreme noise interference, we propose a diffusion model with self-attention
module for ECG signal denoising (DMAM-ECG). Specifically, the DMAM-ECG con-
tains two main branches, and each consists of six designed Covolutional-InstanceNormal-
LeakyReLU Filter Blocks (CIL-Filter Block). It first uses the two branches to extract
features of input noise signal observations and potential variables, respectively. Then,
considering that the self-attention module is better at extracting internal correlations of
features, the DMAM-ECCG introduces it to further extract the observation features from
the first branch and fusion with the second branch to a obtain denoised result. To sum
up, our main contributions are as follows:

(1) We proposed a diffusion model with self-attention module for ECG signal denois-
ing (DMAM-ECG), which introduces self-attention module into the diffusion model to
improve the grasp of global information and achieve high-quality information preserva-
tion of denoised ECG signal. In other words, the DMAM-ECG can gradually improve its
denoising effects by multi-shot signal reconstruction, especially for extreme noise removal.

(2) We introduced the self-attention module in DMAM-ECG to extract the correlation
of different positions in the input sequence, i.e., the better extraction of internal corre-
lations of features, for improving the denoising effectiveness of ECG signal with extreme
noise interference.

(3) Experiments on the ECG records from the QT database with noise from the MIT-
BIH NST database show that the DMAM-ECG outperforms five existing state-of-the-
art ECG denoising methods in ECG denoising with five similarity-based metrics. In
particular, the proposed DMAM-ECG with only 3-shot gets much better denoising results
than the best baseline with 10-shot.

2. Related Work. This section will introduce the existing ECG signal denoising meth-
ods and denoising diffusion model.

2.1. ECG signal denoising. The common ECG signal interference includes baseline
wander, power frequency interference, and EMG. Baseline wander is usually caused by
poor contact between the electrode and the body surface, and it belongs to low-frequency
signal. Power frequency interference is caused by electromagnetic radiation, it is relatively
stable. EMG is caused by involuntary muscle contraction of the subject, its frequency
range is wide. EMG is relatively irregular and manifests as high-frequency sawtooth waves
on the ECG. The most of existing ECG signal denoising methods mainly focus on baseline
wander removal and can be roughly divided into traditional digital filter-based methods
and deep learning-based methods.

2.1.1. Traditional filter-based methods. Early traditional methods usually process ECG
signals from a signal processing perspective, they designed targeted filters for noise re-
moval. Based on the assumption of different statics between noise and the original ECG
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(b) Baseline wander

(c) Power-frequency interference (d) EMG interference

(a) Clean ECG signal

(e) Motion artifacts (f) Mixed noises

Figure 1. Examples of ECG signal under different noise interference.

signal, Barati et al. [14] performed independent component analysis on the ECG signal
channel to remove baseline wander. Kumar et al. [15] combined finite pulse recovery
(FIR) and infinite pulse recovery (IIR) digital filters for ECG signal denoising. Taouli et
al. [16] used morphological filters to suppress ECG signal noise and baseline wander. Un-
fortunately, despite FIR-based methods have good effects on high-frequency noise, they
easily cause distortion of the low-frequency signal. On the contrary, morphological filter-
based methods have an ideal effect on baseline wander removal, but they are not suitable
for high-frequency noise removal.

2.1.2. Deep learning-based methods. Recently, deep learning-based methods have attracted
increasing attention [17, 18, 19, 20, 21, 22]. Compared to shallow models that rely on rich
information inherent in data, deep models based on data-driven show better performance.
Representative deep learning-based methods include CNN-based [9], Denoising Autoen-
coder (DAE-based) [10, 11], and GAN-based [13]. For instance, DRNN [9] first uses deep
Res-Net to pre-train on synthesized data, and then uses transfer learning to fine-tune in
reality for ECG signal denoising. Considering that DAE can reconstruct clean signals
from noisy signals, Nichol et al.constructed a deep neural network using wavelet transfer
to improve DAE. Similarly, FCN-DAE [11] constructs a DAE using a fully convolutional
neural network. Based on the reconstruction of GANs, CGAN [13] proposes an ECG
signal denoising method, which uses residual blocks and skip connecting in the generator
to extract deeper information and ResNet framework in the discriminator. Unfortunately,
deep learning-based methods show good effects in weak noisy corrupted ECG signals but
limited denoising performances in extreme noise conditions.

2.1.3. Denoising diffusion model. The GAN has potential instability and lack of genera-
tion diversity due to adversarial training. And the VAE has poor generation quality due
to its reliance on substitution loss. Compared to GAN and VAE, the diffusion model
does not require adversarial training and can obtain high-quality generated data with
better analyticity and flexibility. In other words, a well-trained diffusion model [23, 24]
can generate data that conforms to the data distribution from a randomly sampled noise
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Figure 2. Denoising diffusion model of the DMAM-ECG.

through the learned denoising process. Therefore, we apply the denoising diffusion model
to ECG signal denoising and demonstrate its effectiveness in this paper.

The denoising diffusion model is a latent variable model that has been widely used in
image generation. As shown in Figure 2, it first adds noise gradually to the input data
using a fixed Markov chain to obtain pure Gaussian noise data (Forward Diffusion). Then,
it trains and learns the reverse process to convert the noise back into a target distribution
sample for generating new data (Reverse Diffusion). In other words, the forward diffusion
q(·|·) gradually adds noise for clean ECG signal, and the reverse diffusion pθ(·|·), which is
conditioned by the corresponding noisy ECG observations x̃, aims to learn the denoising
function θ to generate the clean signal from random Gaussian noise. Specifically, given a
data distribution q (x0), it expects to obtain an approximate distribution pθ (x0).
Forward diffusion gradually adds noise to the data to approximate the posterior

distribution q (x1:T | x0), where the latent variables x1, . . . , xT has the same dimension
with x0. In [24], the diffusion process is set as a simple parameterized fixed Markov chain,
with each step using conditional Gaussian translation,

q (x1:T | x0) :=
T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
,

(1)

where β1, . . . , βT denotes a variance scheduling, whose value can be constantly changing
by learning or fixed. N (x;µ, σ) is a Gaussian probability density function with parameters
µ and σ.

Noted that, on any time step t for xt, the closed form for sampling can be represented
as,

q (xt | xt−1) := N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (2)

where αt := 1− β and ᾱt =
∏t

i=1 αi. So xt can be further represented as,

xt =
√
αtx0 + (1− αt) ϵ (3)

where ϵ is a parameter of the Gaussian distribution N (0, I).
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Reverse diffusion aims to restore the initial value of x0 from xt. Starting from
pure Gaussian noise p (xT ) := N (xT ,0, I), the inverse diffusion process is defined by the
following Markov chain,

pθ (x0:T ) := p (xT )
T∏
t=1

pθ (xt−1 | xt) , xT ∼ N (0, I)

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) , σθ (xt, t) I)

(4)

Noted that the time-related parameters of transformation are obtained through learning
[24]. The specific parameterization method for pθ (xt−1 | xt) is described as,

µθ (xt, t) =
1

αt

(
xt −

βt√
1− αt

ϵθ (xt, t)

)
,

σθ (xt, t) =

√
β̃t, where β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1
,

(5)

where ϵθ(·, ·) is a learnable denoising function to estimate the added noise vector ϵ. Such
parameterization results in the following alternative loss function,

Lsimple (θ) := Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
]
, (6)

Equation (6) can be regarded as a weighted combination of denoising score matching.
Compared to the original score matching loss [25, 26], it introduces the learnable param-
eter ϵ. That way, the model can flexibly adjust the noise estimation strategy to adapt
to different data distributions and noise types, thus achieving more stable training and
getting better results.

Nevertheless, the diffusion model requires a large amount of computing resources and
time to handle complex denoising tasks. Specifically, its computational complexity expe-
riences a sharp increase in dealing with high-dimensional data. It is challenge to select
appropriate parameters for achieving better denoising results. It depends on certain noise
types, but for non specific types of noise and complex noise distributions, diffusion model
may perform poorly. Besides, it is difficult in boundary processing, which easily leads to
poor denoising effect at he boundary. Furthermore, diffusion model may exsit the exces-
sive smoothing problem in some case. In other words, even the noise can be effectively
removed, it may lead to a decrease in signal details at the same times.

3. Methodology. This section first introduces the diffusion model for ECG signal de-
noising. Then, it introduces the overall structure of the DMAM-ECG, the details of the
designed CIL-Filter Block, and the SAM-Fusion Block. Finally, it introduces the used
loss function.

3.1. Diffusion model for ECG signal denoising. Owing to the signal smooth pro-
cessing ability, diffusion model has achieved significant results in image processing tasks,
and it also has the great potential to be applied to ECG signal denoising. In fact, the
probability of each state transition in a Markov chain only depends on the current state
instead of past states. In signal processing, we can consider noise as a random state
change, while diffusion model simulate the propagation and diffusion process of noise us-
ing the idea of Markov chain. Therefore, we can update the signal value by applying
the transition probability of Markov chains. And these transition probabilities define the
possibility of signal propagation from one location to the adjacent locations. During the
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propagation process, noise gradually spreads to adjacent positions, resulting in a smooth-
ing effect throughout the entire signal. By iteratively applying the transfer process of
Markov chains, noise propagates from high-energy regions to low-energy regions, result-
ing in a gradual reduction of noise and an improvement in signal clarity. Therefore, we
utilize the diffusion model for ECG signal denoising in this paper.

For the ECG signal denoising task, it assumes that the clean denoised ECG signal is
x0 and the noisy ECG signal is x̃. Inspired by DeSocD-ECG [27], we model the condi-
tional distribution pθ (x0 | x̃) based on a diffusion model to estimate the true conditional
distribution q (x0 | x). Thus, the reverse diffusion process (Equation 4) can be extended
to the following conditional form,

pθ (x0:T | x̃) := p (xT )
T∏
t=1

pθ (xt−1 | xt, x̃) , xT ∼ N (0, I),

pθ (xt−1 | xt, x̃) := N (xt−1;µθ (xt, t | x̃) , σθ (xt, t | x̃) I) .
(7)

With the noisy observations x̃ as conditions, the reverse diffusion process iteratively
reconstructs the clean signal x0 from an original Gaussian distribution xT by denoising on
every small step, as shown in Figure 2. Besides, to improve synthetic quality with fewer
forward/reverse diffusion steps, we adapt the same noise schedule βi initial strategy in
[23, 28], i.e., the (β1, . . . , βn) are given by,

βt =

(
T − t

T − 1

√
β1 +

t− 1

T − 1

√
βt

)2

. (8)

where the initial and the final noise schedule values are set to β1 = 0.0001, βT = 0.5,
respectively.

Moreover, to improve the model effectiveness, we further use the specific noise schedule
for the training process [27], which can avoid the noise function ϵθ by conditioning on the
step index t. Specifically, with the definitions αt := 1− βt and ᾱt :=

∏t
i=1 αi, we first use

the predefined noise schedule S = {1,
√
ᾱ0, . . . ,

√
ᾱT} in training process. Then, we add

the denoising function condition on the continuous noise level ᾱ ∼ Uniform (St−1, St).
Therefore, the denoising function ϵθ receives the noisy observations x̃ as the condition,
and the loss function is defined as,

Ex0,ᾱ,ϵ

[∥∥ϵ− ϵθ
(√

ᾱx0 +
√
1− ᾱϵ, x̃, ᾱ

)∥∥2
]

(9)

3.2. The structure of the DMAM-ECG. The structure of the DMAM-ECG is shown
in Figure 3, it contains two main branches, each consisting of six Convolutional Instan-
ceNormal LeakyReLU Filter Blocks (CIL-Filter Blocks), which is motivated by the half
normalized filter proposed by DeSocD-ECG [27]. specifically, the two branches are first
used to extract features of input noisy ECG signal observation x̃ and potential variable
xt. Then, self-attention module fusion blocks (SAM-Fusion Blocks) are introduced to
further extract features from the first branch and to fuse the feature information with
those of another branch.

CIL-Filter Block. The structure detail of the designed CIL-Filter Block is shown
in Figure 4. Firstly, the input is sent into two improved convolutional blocks with ker-
nel sizes 3 × 3 and 5 × 5 for preliminary feature extraction, respectively. Notably, the
improved convolutional block is used to improve training stability while preserving natu-
ral statistical characters of features, and it is composed of one common convolution, an
instance-normalization layer, and a LeakyReLU layer, as shown in the sub-figure below
Figure 4. Then, those features are fed into multi-scale filters for further extraction under
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Figure 3. The structure of the proposed DMAM-ECG.
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Figure 5. The structure of the SAM-Fusion Block.

different receptive fields. Next, they are concatenated in channel-wise and then aggregated
by a 9× 9 improved convolutional block. Finally, those features are through LeakyReLU
layer, and the following add to the extracted features of the second convolutional block
after the LeakyReLU layer and the input.

SAM-Fusion Block. Considering that the self-attention module can reduce the
dependence on external information and is better at capturing internal correlations of
features, we introduced self-attention module fusion blocks (SAM-Fusion Blocks) to the
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further extraction of features and fusion of two branches. Motivated by the DeScoD-
ECG [27], the SAM-Fusion Block is designed based on the feature-wise linear modulation
(FiLM) [29], and its specific structure is shown in Figure 5. Firstly, the input features are
input into a 3× 3 convolutional layer while the noise level

√
ᾱ is encoded by a sinusoidal

positional encoder [30]. Then, the
√
ᾱ is further encoded by a 1 × 1 convolutional layer

to obtain the learnable scaling and shift vectors. Next, the vectors multiply and then add
to the input feature. Finally, they are fed into a 3 × 3 convolutional layer followed by a
self-attention module for better capture of internal correlations.

3.3. Loss function. Since the Smooth L1 loss can solve the un-smooth problem of L1
loss, and the gradient explosion problem at outliers of L2 loss, we used the Smooth
L1 loss for the proposed DMAM-ECG. Using x and y to represent the input and the
output denoised ECG signal respectively, the loss function L1smooth of DMAM-ECG can
be defined as,

L1smooth(x, y) =
1

N

N∑
n=1

{
0.5 ∗ [x(n)− y(n)]2, if |x(n)− y(n)|<1

|x(n)− y(n)| − 0.5, otherwise.
(10)

4. Experiments.

4.1. Training Setting, Database, and Metrics.

4.1.1. Training Setting. All the experiments were executed on Intel(R) Xeon(R) Plat-
inum 8375C CPU @ 2.90GHz CPU and NVIDIA GeForce RTX 3090 GPU. The proposed
DMAM-ECG was coded with the PyTorch framework [31], the training epochs are 600,
the initial learning rate is 0.001, and the batch size is 128. We compared our DMAM-
ECG with 5 the-art-of-state ECG denoising methods, including DRNN [9], FCN-DAE
[11], CGAN [13], DeepFilter [12], and DescoD-ECG [27], and we kept their default pa-
rameter values to obtain their best results. Specifically, the specific parameter settings
for each algorithm were shown in Table 1. Notably, to encourage more researchers to
validate and build upon this work, we publish our code of the proposed DMAM-ECG at
https://github.com/luvletterh/DMAM-ECG.

Table 1. Training setting details of different ECG denoising methods.

Methods DRNN [9] FCN-DAE [11] CGAN [13] DeepFilter [12] DeScoD-ECG [27] Ours
Learning rate 0.001 0.001 0.1 0.001 0.001 0.001
Batch size 64 128 64 128 96 128
Epochs 10 25 200 60 400 600

Framework TensorFlow PyTorch PyTorch TensorFlow PyTorch PyTorch

4.1.2. Database. We use the QT database [32] and the Massachusetts Institute of Technology-
Beth Israel Hospital Noise Stress Test (MIT-BIH NST) database for all experiments. The
QT database [32] is composed of 105 fifteen-minute excerpts of two-channel ECG Holter
recordings, with various QRS and ST-T morphologies. The MIT-BIH NST database [33]
contains 3 types of typical noise recordings (including baseline wander, EMG artifacts,
and motion artifacts) that are often present in stress tests caused by motion-related inter-
ference. The noises are collected by placing the electrodes on the patient’s limbs without
the presence of ECG signals. To obtain different noising ECG signals, we corrupt the nor-
mal ECG signal from QT with the noise recordings from MIT-BIH NST using different
random interference factors ranging from 0.2 to 2.5. Notably, the specific pre-processing
of the dataset in our work is following that of DeepFilter [12].
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4.1.3. Evaluation Metrics. To quantitatively evaluate different ECG denoising methods,
we use four similarity-based metrics [34, 35], including the Sum of the Square of the
Distances (SSD), Percentage Root-mean-square Difference (PRD), Absolute Maximum
Distance (MAD), and Cosine Similarity (Cos Sim). Noted that the lower (↓) the values
of SSD, PRD, and MAD and the higher (↑) the Cos Sim value, the better the denoising
effect. By giving an input noisy ECG signal x(n) and an output denoising ECG signal
y(n), the calculation formulas of the above metrics are as follows,

SSD =
N∑

n=1

[x(n)− y(n)]2 (11)

PRD =

√ ∑N
n=1[x(n)− y(n)]2∑N

n=1[x(n)−
1
N

∑N
n=1 x(n)]

2
× 100% (12)

MAD = max|x(n)− y(n)|, for1 ≤ n ≤ N (13)

cos Sim =
< x, y >

∥x∥∥y∥
(14)

4.2. ECG Signal Denoising Results. We compared the DMAM-ECG with five ex-
isting representative ECG denoising methods qualitatively and quantitatively, including
DRNN [9], FCN-DAE [11], CGAN [13], DeepFilter [12], and DeScoD-ECG [27]. Mean-
while, to better observe the denoising abilities of all methods in different degrees of noise
interference, we divided the noise into different segments according to the random factor,
i.e. 0.2 to 0.6, 0.6 to 1.0, 1.0 to 1.5, 1.5 to 2.0, and an extreme noise interference (2.0 to
2.5).

4.2.1. Qualitative Results. To observe intuitively the denoising effect of the proposed
DMAM-ECG, we provide the visual denoised results of it with different shot reconstruc-
tions on each noise segment. It is worth noting that, we use the same signal reconstruction
strategy of DeSocD-ECG [27] to improve reconstruction accuracy, i.e., we test 3, 5, and
10-shot averages for ECG signal denoising in this paper. As shown in Figure 6, the clean,
noisy, and denoised ECG signals are marked in red, blue, and green wave lines, respec-
tively. Figure 6 can reflect that the DMAM-ECG achieves effective noise removal for all
noise segments. Even for extremely noisy signals (the blue) that have undergone signifi-
cant deviation, the denoised signals (the green) are restored and match the clean signals
(the red). In specific, From the Figure 6(a) to (d), for the lower noise segments, including
0.2 to 0.6 and 0.6 to 1.0, the denoised results of the DMAM-ECG with 10-shot reconstruc-
tions are matching better with the original clean signal overall. And for the higher noise
segments, including 1.0 to 1.5 and 1.5 to 2.0 noise segments, there are certain degrees of
wave line mismatch. For example, in those signal regions with steeper frequency changes,
it can clearly see the red wave lines of the original clean signal. This indicates that our
DMAM-ECG processes better for low level noisy ECG signals.

Additionally, to validate that our DMAM-ECG can be more effective for high noise
removal, we compared it with the best comparing algorithm DeScoD-ECG (10-shot) on
the extreme noise segment (2.0-2.5). As shown in Figure 7, it can be observed that
DMAM-ECG surpasses DesocD-ECG (10-shot) with only 3-shot, and the results after
5-shot and 10-shot can be further improved, manifested as being close to the clean signal
wave lines.
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Table 2. Quantitative comparison results of different methods on process-
ing 0.2 to 0.6 noise segments. The best results are marked in bold.

Methods SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 0.2 to 0.6
DRNN [9] 4.012± 7.751 40.415± 19.997 0.402± 0.296 0.919± 0.084

FCN-DAE [11] 7.421± 8.052 76.752± 41.890 0.493± 0.286 0.839± 0.121
CGAN [13] 3.461± 6.054 39.090± 19.696 0.297± 0.175 0.928± 0.060

DeepFilter [12] 2.421± 3.442 34.341± 14.564 0.296± 0.244 0.945± 0.068
DeSocD-ECG(10-shot) [27] 2.421± 3.297 28.794± 15.534 0.218± 0.178 0.959± 0.040

Ours(3-shot) 1.804± 4.035 27.126± 14.006 0.214± 0.165 0.965± 0.038
Ours(5-shot) 1.744± 4.307 26.490± 13.359 0.210± 0.167 0.967± 0.035
Ours(10-shot) 1.630± 3.853 25.902± 13.313 0.206± 0.161 0.969± 0.033

Table 3. Quantitative comparison results of different methods on process-
ing 0.6 to 1.0 noise segments. The best results are marked in bold.

Methods SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 0.6 to 1.0
DRNN [9] 4.988± 6.782 46.382± 22.103 0.452± 0.301 0.903± 0.087

FCN-DAE [11] 8.742± 8.325 87.145± 57.057 0.551± 0.361 0.863± 0.151
CGAN [13] 5.518± 7.994 48.972± 24.694 0.370± 0.215 0.891± 0.085

DeepFilter [12] 3.945± 4.841 43.834± 20.093 0.341± 0.222 0.913± 0.084
DeSocD-ECG(10-shot) [27] 3.249± 4.424 38.470± 19.219 0.321± 0.246 0.936± 0.056

Ours(3-shot) 2.841± 4.561 35.162± 16.110 0.298± 0.194 0.945± 0.053
Ours(5-shot) 2.716± 4.613 34.236± 15.755 0.291± 0.189 0.948± 0.049
Ours(10-shot) 2.607± 4.238 33.769± 15.543 0.288± 0.187 0.950± 0.046

Table 4. Quantitative comparison results of different methods on process-
ing 1.0 to 1.5 noise segments. The best results are marked in bold.

Methods SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 1.0 to 1.5
DRNN [9] 7.324± 11.034 53.527± 25.436 0.502± 0.419 0.863± 0.151

FCN-DAE [11] 10.987± 12.993 99.101± 68.672 0.625± 0.430 0.751± 0.177
CGAN [13] 8.579± 12.565 60.514± 36.254 0.468± 0.306 0.838± 0.131

DeepFilter [12] 5.881± 7.923 54.103± 27.361 0.415± 0.283 0.874± 0.109
DeSocD-ECG(10-shot) [27] 4.436± 5.756 45.782± 22.999 0.378± 0.257 0.916± 0.072

Ours(3-shot) 4.139± 6.543 42.474± 20.829 0.368± 0.253 0.923± 0.071
Ours(5-shot) 3.913± 6.338 41.506± 20.474 0.362± 0.2489 0.927± 0.068
Ours(10-shot) 3.752± 6.148 40.890± 20.296 0.354± 0.242 0.931± 0.063

Table 5. Quantitative comparison results of different methods on process-
ing 1.5 to 2.0 noise segments. The best results are marked in bold.

Methods SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 1.5 to 2.0
DRNN [9] 10.151± 15.893 59.983± 27.833 0.596± 0.451 0.863± 0.151

FCN-DAE [11] 14.843± 21.831 112.325± 95.021 0.741± 0.485 0.751± 0.177
CGAN [13] 12.382± 18.598 74.830± 59.722 0.587± 0.419 0.838± 0.131

DeepFilter [12] 8.152± 11.513 66.712± 38.841 0.490± 0.371 0.773± 0.184
DeSocD-ECG(10-shot) [27] 6.161± 8.533 56.061± 41.694 0.468± 0.331 0.883± 0.112

Ours(3-shot) 5.828± 8.445 50.359± 26.899 0.451± 0.294 0.894± 0.101
Ours(5-shot) 5.525± 8.015 49.301± 26.663 0.441± 0.290 0.901± 0.094
Ours(10-shot) 5.205± 7.370 48.671± 27.008 0.433± 0.284 0.906± 0.088
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(a) Ours (10-shot) on 0.2 to 0.6

(b) Ours (10-shot) on 0.6 to 1.0

(c) Ours (10-shot) on 1.0 to 1.5

(d) Ours (10-shot) on 1.5 to 2.0

Figure 6. Visual denoised results of ours (10-shot) on processing different
noise segments. The clean, noisy, and denoised ECG signals are marked in
red, blue, and green wave lines, respectively.

Table 6. Quantitative comparison results of DeSocD-ECG [27] with 10-
shot reconstruction and ours with 3-, 5-, and 10-shot reconstruction. The
best results are marked in bold.

Methods SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 2.0 to 2.5

DeSocD-ECG(10-shot) 7.936± 11.358 68.518± 53.907 0.558± 0.427 0.835± 0.183
Ours(3-shot) 7.031± 9.016 58.187± 35.147 0.520± 0.347 0.863± 0.134
Ours(5-shot) 6.474± 7.795 56.792± 32.396 0.507± 0.337 0.872± 0.127
Ours(10-shot) 6.094± 7.433 55.463± 32.011 0.491± 0.326 0.881± 0.118
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(a) DeScoD-ECG (10-shot)

(b) Ours (3-shot)

(c) Ours (5-shot)

(d) Ours (10-shot)

Figure 7. Qualitative comparison results of DeScoD-ECG (10-shot) and
ours on processing extreme noise segment (2.0 to 2.5). The clean, noisy,
and denoised ECG signals are marked in red, blue, and green wave lines,
respectively.

4.2.2. Quantitative Results. Quantitative compared results of different methods for pro-
cessing different noise segments are listed in Tables 2-6, the data marked in bold of all
Tables indicate the best denoising results. We demonstrate the compared results of the
DMAM-ECG (3-, 5-, and 10-shot reconstruction) with the five state-of-the-art baselines.
Among them, we take the best results of DeScoD-ECG (10-shot) [27] for comparison. It
can be observed that our DMAM-ECG (10-shot) achieves the best denoising effects on all
the noise segments (including 0.2 to 0.6, 0.6 to 1.0, 1.0 to 1.5, 1.5 to 2.0, and the extreme
noise 2.0 to 2.5) in all metrics. Specifically, as shown in Tables 2 and 3, the SSD, PRD,
and MAD values of ours (10-shot) are less (better) than the best baseline (10-shot) of
1.0±, 4.0±, and 0.02± in average, respectively. And the Cos Sim value are higher than it
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of 0.03± in average. Especially, compared to the best baseline (DescoD-ECG with 10-shot
reconstruction), the DMAM-ECG has surpassed it with only 3-shot reconstruction for all
noise segments, which reflects the superiority of the DMAM-ECG in extreme ECG signal
noise removal. Besides, as the number of reconstructions increases, its denoising effect
can continue to improve.

Table 7. Quantitative comparison results of the DMAM-ECG without
and with SAM, as well as different MHAM (-2head, -4head, and -8head)
used for different noise segments.

Metrics SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 0.2 to 0.6
Without SAM 1.817± 3.317 27.680± 12.951 0.224± 0.166 0.965± 0.032
With SAM 1.630± 3.853 25.901± 13.313 0.206± 0.161 0.969± 0.033
MHAM-2head 2.251± 4.193 29.749± 14.726 0.229± 0.162 0.958± 0.040
MHAM-4head 8.484 ± 9.749 50.367 ± 20.094 0.298 ± 0.172 0.842 ± 0.157
MHAM-8head 2.423± 4.913 30.203± 14.359 0.233± 0.154 0.960± 0.035
Noise Segment 0.6 to 1.0
Without SAM 2.919± 3.674 36.661± 16.803 0.314± 0.214 0.942± 0.050
With SAM 2.604± 4.238 33.769± 15.543 0.288± 0.187 0.950± 0.046
MHAM-2head 3.190± 4.021 36.648± 17.656 0.310± 0.220 0.940± 0.053
MHAM-4head 9.700 ± 8.921 55.079 ± 19.672 0.371 ± 0.223 0.822 ± 0.161
MHAM-8head 3.411± 4.572 37.413± 18.937 0.310± 0.215 0.941± 0.053
Noise Segment 1.0 to 1.5
Without SAM 4.136± 5.515 44.054± 21.544 0.379± 0.254 0.919± 0.071
With SAM 3.752± 6.148 40.89± 20.296 0.354± 0.242 0.931± 0.063
MHAM-2head 4.380 ± 6.381 43.459 ± 21.452 0.379 ± 0.279 0.921 ± 0.069
MHAM-4head 11.099 ± 12.171 60.173 ± 20.709 0.438 ± 0.285 0.799 ± 0.167
MHAM-8head 4.797± 7.536 44.965± 23.548 0.377± 0.274 0.919± 0.076
Noise Segment 1.5 to 2.0
Without SAM 5.939± 8.689 52.814± 31.434 0.460± 0.314 0.885± 0.118
With SAM 5.205± 7.370 48.671± 27.008 0.433± 0.284 0.906± 0.088
MHAM-2head 5.686 ± 8.011 50.584 ± 26.772 0.448 ± 0.294 0.898 ± 0.088
MHAM-4head 12.171 ± 11.341 65.296 ± 24.255 0.502 ± 0.303 0.779 ± 0.170
MHAM-8head 6.250± 9.533 52.630± 29.821 0.449± 0.284 0.892± 0.101
Noise Segment 2.0 to 2.5
Without SAM 8.016± 10.861 64.636± 45.136 0.545± 0.413 0.827± 0.190
With SAM 6.094± 7.433 55.463± 32.011 0.491± 0.326 0.881± 0.118
MHAM-2head 6.696 ± 8.238 57.875 ± 33.635 0.505 ± 0.347 0.869 ± 0.124
MHAM-4head 13.582 ± 12.650 71.115 ± 28.153 0.557 ± 0.347 0.748 ± 0.189
MHAM-8head 7.160± 9.145 59.851± 36.226 0.501± 0.329 0.863± 0.134

4.3. Ablation Experiments. Besides, to validate the significance of the introduced
Self-Attention Module (SAM) and the smooth-L1 loss function for our DMAM-ECG, we
further conducted related ablation experiments on them.

4.3.1. Effect of the SAM. We compared the denoising results of the DMAM-ECG without
and with the SAM, as well as different Multi-Head Attention Module (MHAM, including
-2head, -4head, and -8head) used for different noise segments. As shown in Figure 8
and Table 7, it can be observed that the denoising ECG results with SAM used to get
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(a) without SAM (b) with SAM

0.2 to 0.6

2.0 to 2.5

0.6 to 1.0

1.0 to 1.5

1.5 to 2.0

Figure 8. Quanlitative comparison results of the DMAM-ECG with and
without SAM for different noise segments.

higher similarity-based metric values, while MHAM-4head gets the worth metric values
for all the noise segments. It is worth noting that the greater the noise intensity, the more
significant the improvement in effect, it is thus reflecting the important significance of the
introduced SAM for extreme noise conditions.

Table 8. Quantitative comparison results of the DMAM-ECG using L1
loss or Smooth L1 loss for different noise segments.

Metrics SSD ↓ PRD ↓ MAD ↓ Cos Sim ↑
Noise Segment 0.2 to 0.6
L1 loss 2.039± 4.935 27.194± 15.138 0.199± 0.190 0.965± 0.039
Smooth L1 loss 1.630± 3.853 25.901± 13.313 0.206± 0.161 0.969± 0.033
Noise Segment 0.6 to 1.0
L1 loss 2.811± 4.077 33.899± 15.447 0.264± 0.174 0.948± 0.046
Smooth L1 loss 2.604± 4.238 33.769± 15.543 0.288± 0.187 0.950± 0.046
Noise Segment 1.0 to 1.5
L1 loss 4.242± 6.436 42.271± 22.230 0.348± 0.234 0.925± 0.0709
Smooth L1 loss 3.752± 6.148 40.89± 20.296 0.354± 0.242 0.931± 0.063
Noise Segment 1.5 to 2.0
L1 loss 5.516± 7.856 51.177± 31.071 0.489± 0.329 0.900± 0.094
Smooth L1 loss 5.205± 7.370 48.671± 27.008 0.433± 0.284 0.906± 0.088
Noise Segment 2.0 to 2.5
L1 loss 6.672± 7.899 58.734± 36.390 0.489± 0.329 0.873± 0.115
Smooth L1 loss 6.094± 7.433 55.463± 32.011 0.491± 0.326 0.881± 0.118
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(a) L1 loss (b) Smooth L1 loss

0.2 to 0.6

2.0 to 2.5

0.6 to 1.0

1.0 to 1.5

1.5 to 2.0

Figure 9. Qualitative comparison results of the DMAM-ECG using L1
loss or Smooth L1 loss for different noise segments.

4.3.2. Effect of Smooth L1 loss. We compared the effect of L1 loss used in DeScoD-ECG
[27] and Smooth L1 loss on ECG signal denoising task. As shown in Figure 9 and Table
8, it can be found that the DMAM-ECCG using Smooth L1 loss gets better denoising
effects with higher similarity metric values.

4.3.3. Time complexity of the DAMA-ECG. Since the time complexity is a very important
performance metric for signal denoising tasks, we conducted the related experiments to
validate the efficiency of the DMAM-ECG to achieve real-time performance. We test the
average time consuming of processing one cycle ECG signal. The specific time complexities
of the DMAM-ECG (including 3-, 5-, and 10-shot) for different noise segments are shown
in Table 9. It indicates that the time results show that the average processing time of the
DMAM-ECG for one cycle of ECG signals increases overall with the increase of noise level.
But it will not exceed 1 second, which can better meet the denoising time requirements
of EEG signals.

5. Conclusions. In this paper, we proposed a diffusion model with self-attention mod-
ule for ECG signal denoising (DMAM-ECG), which can reconstruct the clean ECG signal
from random Gaussian noise by learning the conditional distribution in the reverse dif-
fusion process conditioned by noisy ECG observations. Specifically, the DAMA-ECG
contains two main branches, each consisting of six designed CIE-Filter blocks, for fea-
ture extractions of noisy observations and latent variables. Meanwhile, to reduce the
dependence on external information and better capture internal correlations of ECG fea-
tures, the DMAM-ECCG introduces corresponding six SAM-Fusion blocks to fuse the
two branches. A related ablation study was performed to validate the significance of the
self-attention module for extreme noise removal. Experimental results demonstrate that
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Table 9. Time efficiency analysis of the DMAM-ECG (including 3-, 5-,
and 10-shot).

DMAM-ECG 3-shot 5-shot 10-shot
Noise Segment 0.2 to 0.6
Time(seconds) 0.08885 0.14555 0.29117
Noise Segment 0.6 to 1.0
Time(seconds) 0.08852 0.14796 0.29611
Noise Segment 1.0 to 1.5
Time(seconds) 0.09170 0.15270 0.30543
Noise Segment 1.5 to 2.0
Time(seconds) 0.09521 0.15858 0.31766
Noise Segment 2.0 to 2.5
Time(seconds) 0.09475 0.15803 0.31687

the proposed DMAM-ECG outperforms the existing five state-of-the-art baselines on dif-
ferent degreea of noise interference removal. This indicates that the DMAM-ECG has
certain potential application significance in monitoring cardiac activity in various clinical
settings.
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